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Abstract--The motion of a particle released into a fluid flow depends upon the velocity of the fluid in 
the immediate vicinity of the particle. In a turbulent flow, the fluid velocity is a random quantity, so that 
particle motions are also random. Knowledge of certain statistical characteristics of the fluid motion 
allows for determination of mean properties of the particle motions. In this paper, dispersion of particles 
is analysed by assuming a simple form for the auto-correlation of the fluid motions following the particle 
in homogeneous, isotropic and stationary turbulence. Two cases are considered, one where the particles 
are initially at rest, the second where the particles are initially 'excited'. Particle velocity auto-correlations, 
particle dispersion coefficients and related quantities are determined as functions of time for both cases. 
Expressions for development times for heavy particles are derived. Copyright © ! 996 Elsevier Science Ltd. 
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1. I N T R O D U C T I O N  

The dispersion of  discrete particles under the influence of  a turbulent primary gas flow is a subject 
of  interest in nuclear and combustion engineering, atmospheric dynamics and particle technology, 
amongst  other areas. One of the characteristics of  such flows is the high density ratio between the 
particles and the carrier flow. Because the primary flows in these cases are turbulent, the particle 
trajectories are random and the degree of  randomness influences the rate of  spread of  the particles. 
It is of  interest in each application area to be able to estimate the rate of  spread of particles under 
the influence of  the primary flow turbulence. The rate of  spread can be characterised in terms of 
a 'dispersion coefficient'. Other, related, dispersion characteristics, such as the 'energy' of  the 
particle fluctuations, may also be of  interest. 

Real turbulent flows are extremely complex in that turbulence characteristics are different at 
different points in the flow (inhomogeneity), or in different co-ordinate directions (anisotropy), or 
at different times (non-stationarity). Analysis of  such flows generally requires numerical solution 
methods. However, a great deal of  understanding can be gained by the study of  much simpler 
(idealized) turbulent flows, which are assumed to be homogeneous, isotropic and stationary (see 
Reeks 1977, for example). 

Tchen (1947) (see also Hinze 1975) developed a theory for such flows which showed long-time 
particle dispersion coefficients to be independent of  particle inertia. Hinze (1975) also investigated 
the temporal  development of  the dispersion coefficient. This approach has been to some extent 
superseded by subsequent analyses (e.g. Reeks 1977; Mei et al. 1991) which require less drastic 
simplifying assumptions. However, the present paper  returns to this approach because of  its relative 
simplicity and also because the main interest here is in development times of  the dispersion 
characteristics. It is shown here that, particularly for high-inertia particles, these development times 
are largely independent of  the fluid flow behaviour. Given that the assumption about  the fluid flow 
behaviour is the principal difference between Tchen's (1947) model and the later analyses, this result 
may be taken as sufficient justification for adopting the simpler approach. 

It should be expected that the development of  the particle dispersion characteristics will be 
dependent on the initial state of  the particles. In the present paper, dispersion characteristics of  
particles released from a point source into a simple turbulent flow are investigated. Two different 
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cases are studied. The first case is one where the particles are initially static and must acquire 
turbulence from interaction with the primary flow. The second case corresponds to a steady-state, 
in which the particle motion is fully turbulent. In this case it is assumed that, prior to release, the 
particles have been resident in the turbulent gas flow long enough to develop turbulence. 

By making simplifying assumptions about the equation of motion satisfied by a discrete particle, 
general expressions for the dispersion characteristics are developed for both of the above cases. 
In section 2, expressions are developed for particle velocity auto-correlations, 'energy', integral time 
scale, dispersion coefficient etc. for both of the cases noted above. 

These quantities all depend on the behaviour of the fluid velocity seen by a particle on its path 
through the fluid. By assuming a particular form for the auto-correlation of this velocity, analytical 
expressions can be developed for the particle dispersion characteristics. The integrals developed in 
section 2 are evaluated in section 3, and expressions are developed for the dispersion characteristics. 

In section 4, the development of the solutions as functions of time is investigated. Development 
times for high-inertia particles are also developed as functions of the particle relaxation time, and 
it is shown in an appendix that these development times are in fact independent of the fluid velocity 
auto-correlation. 

The analysis leads to expressions for the particle dispersion characteristics as functions of time. 
In addition to estimating development times for acquisition of turbulence, the results presented can 
also be used in the calibration of Lagrangian models for particle dispersion. For many models 
which take into account the 'crossing trajectories', 'inertia' and 'continuity' effects, the performance 
of the model for finite-inertia particles with finite drift velocity is not necessarily known a p r i o r i .  

Full understanding of such models therefore requires that the models be calibrated over a range 
of conditions. This leads to the question of how long simulations should be run in order to 
determine long-time dispersion statistics. Estimates are given in this paper of the development times 
for the particle dispersion coefficient. It is shown that a pseudo-dispersion coefficient can be defined, 
whose long-time value is equal to that of the true dispersion coefficient, but which develops much 
more quickly than the true dispersion coefficient. The pseudo-dispersion coefficient could therefore 
be of use to reduce computation times in the calibration process. It is also shown that a common 
method for approximating the dispersion coefficient (called here the effective dispersion coefficient) 
develops much l e s s  quickly than the true dispersion coefficient. 

2. ANALYSIS 

As noted in the introduction above, we are interested in gas/particle flows, for which the particle 
density pp is much greater than that of the primary flow density pf. In order to facilitate analytical 
treatment, further simplifications are required. It is assumed that the particle Reynolds number is 
small, so that the drag on a particle is determined by Stokes' law. In addition, we assume that 
particles are small compared with length scales characteristic of the fluid motions and no lift forces 
act on a particle. 

Under these assumptions, the (one-dimensional) equation of the motion of a spherical particle 
in a turbulent fluid flow is given by 

dup 
d t  - f l (up - Up). [2.1] 

In [2.1], Up and uF are the velocity of the particle and the fluid in the vicinity of the particle, 
respectively, and fl is the reciprocal relaxation time of the particle, determined in the case of 
Stokesian drag by 

18/~f [2.2] 
- 

where pf is the viscosity of the fluid and dp is the diameter of the solid particle. 
Equation [2.1] represents a considerable simplification of the equations of motion developed by 

Maxey & Riley (1983), Mei (1994), for example, Much of the simplification is due to the high 
density ratio, as a result of which the 'Basset' and 'added-mass' terms normally present in the 
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equation of motion can be ignored. Even with this simplification, however, the particle drag may 
be nonlinear in the gas/particle relative velocity and analytical treatment such as that developed 
here is generally not possible. However, it is worthwhile noting that, for the dispersion 
characteristics in which we are interested here, "the dominant contribution is from the particles' 
response to large scales of fluid motion, for which the linear drag is asymptotically correct" (Reeks 
1977). The assumption of  linear Stokesian drag is therefore reasonably realistic. 

When fl is constant, [2.1] can be integrated to give 

up(t )=up(O)+fl  e -at e~"uF(t ") dt'.  [2.3] 

In a turbulent flow, the fluid motion is random so that uF(t') is not known as a function of time, 
and therefore particle velocities are also unknown. However, given information regarding the 
statistical behaviour of  the fluid flow, certain statistical characteristics of the particle motion can 
be determined. It is shown below that these characteristics are dependent on the state of the 
particles as they are released into the turbulent flow. Two initial states are considered here, the 
first in which the particles are initially static and must acquire turbulence from the turbulent fluid 
flow, and the second in which particles are assumed to have been influenced by the turbulent flow 
for a length of time sufficient that the particles' random motion is statistically stationary. 

2.1. Analysis o f  particle motion starting from rest 

Much of  the random behaviour of the particle motions can be characterised in terms of the 
particle velocity auto-correlation, defined as 

H'(t ,  z) = (Up(t)up(t + z)), [2.4] 

where the angled brackets indicate ensemble averaging. Forming the product up(t)Up(t + z) using 
[2.3], rearranging and taking the ensemble average, 

f0 , f ; o  H'(t ,  z) = f12 e-a(2,+,) e~O ea(°+°(up(O)up( 0 + O)  d( dO. [2.5] 

Knowledge of H'(t ,  z) enables determination of the particle energy Up 2 as a function of time. 
Particle energy is defined here as 

u~2(t) = H'(t ,  0), [2.6] 

where it can be assumed without loss of generality that the mean particle velocity is zero. The 
particle energy is simply the variance of the random particle velocities at time t and is a measure 
of the intensity of the fluctuations of the particle velocity at this time. The normalised form for 
H'(t ,  z) is then given by 

RE(t, z) - H'(t ,  z) [2.7] 
Up2(t) • 

R~(t, z) represents a correlation coefficient relating particle velocities at time t to those at the later 
time t + x. At z = 0, the particle velocities are, of course, perfectly correlated and R~(t, z) = 1. As 
z increases, R~(t, z) decreases for a fixed value of t until eventually, as x -* ~ ,  RE(t, T) ~ O. The 
integral time scale of the particle motions is defined as 

~0 ~ 
Zp = R;(t, z) dz, [2.81 

which can be interpreted as an 'average' time for which the particle velocities remain correlated. 

IJMF 22/~---H 
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The position of a particle situated initially at the origin is given by 

xp(t) = up(O) dO. [2.91 

Squaring [2.9], using [2.3], rearranging and taking the ensemble average, assuming that the 
particles are initially static, the mean-square of the particle displacement at time t is given by 

(X~p(t)) = u':fl: e-p<0-z~ e-p<,-:~(u~(x)uF(x + z)) dz dx dr/dO. [2.10] 
,/0 do 

The particle dispersion coefficient is then defined as 

Dp(t) = ~ (X~p(t)). [2.111 

The dispersion coefficient is a measure of the spreading rate of the particles at time t. The particle 
dispersion characteristics can be seen from [2.5] and [2.11] to depend on the auto-correlation of 
the fluid velocities following the particle 

G'(t, z) = (up(t)uF(t + z)). [2.12] 

If it can be assumed that G'(t, r) is independent of the starting time t, then G'(t, z) is of the 
form 

G'(t, z) = u':R~(z), [2.13] 

where RF(z), which is a function only of z, is the auto-correlation normalised so that RF(0) = 1, 
and u' is the turbulence intensity. Here, RF(z) is a correlation coefficient relating the fluid velocity 
in the vicinity of a particle at time t to the fluid velocity around the same particle at the later time 
t + z (and this correlation coefficient is furthermore assumed to be independent of the 'starting' 
time t). The integral time scale of the fluid velocities following a particle is defined as 

zp = ~ RF(z), [2.14] 

and represents an average time during which a particle remains associated with a particular 'eddy' 
in the turbulent flow. 

Using [2.12] and [2.13], and substituting into [2.5], 

H'(t ,  z) = u':/~z e -pt:'+~) e p° ePt°+°Rp(O) d~ dO. [2.15] 

Equation [2.10] can be written as 

(X~p(t)) = f12 e-ate- 2x) e-B<,-~)u,2R~(z) dz dx dr/dO. [2.16] 
q 

It is clear from [2.6], [2.8], [2.11], [2.15] and [2.16] that, if the fluid velocity auto-correlation along 
a particle path, RF(z), is known, many of the dispersion characteristics of initially static non-fluid 
particles can be found. 

2.2. Analysis o f  motions o f  initially-excited particles 

Pismen & Nir (1978) show that the limiting form for H'(t ,  z) as t ---* oo is given by 

= u '2 ~ I ® e -p''-'IRF(t) dt. [2.171 H(z) lim,~ ~ ( up( t )up( t + 
d- o~ 
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R?(t) can be assumed to be symmetrical in time. It follows from this equation that H(z) is 
symmetric in z. The steady-state particle energy is given by 

up 2 = H(0) = e-a'u'2R~(t) dt. 

The normalised form for H(T) is given by 

n(z)  Rp(T)- u~2. 

The integral time-scale of the particle motions is then defined as 

[2.181 

[2.191 

; ao 

"Cp = R p ( ~ ' )  d z .  [2.201 

If the particles are situated initially at the origin but have random initial velocities with the same 
probability distribution as in the steady-state, then the statistical state of the system of particles 
and fluid velocities is equivalent to that found in the steady state. The particle velocity 
auto-correlation will therefore be given by [2.17]. The mean-squared displacement of particles 
situated initially at the origin is given in this case by 

Rearranging this equation, making use of the symmetry of H(z), 

[2.21] 

(X~p(t)) = 2 H(Q dz dt', [2.22] 

which is of the form derived by Taylor (1921) to predict the dispersion of fluid particles. The particle 
dispersion coefficient is given by [2.11]. 

In reality, RF(z) is dependent upon the particle inertia and 'drift' (Reeks 1977; Pismen & Nir 
1978). Here, however, in the spirit of Tchen (1947) and Hinze 0975), it is assumed that Rp(z) is 
independent of particle inertia or drift. The main purpose of the following analysis is to describe 
the temporal development of particle dispersion characteristics after release into a turbulent fluid 
flow. It is demonstrated in appendix A that development times for high inertia particles are 
independent of the fluid turbulence characteristics (i.e. the turbulence energy spectrum). It is 
reasonable to assume that development times for finite-inertia particles are only weakly dependent 
on details of the fluid turbulence. Although long-time values of the dispersion coefficient, particle 
energy etc. are dependent on the fluid turbulence, it is the development times for these long-time 
values that are of interest here. A simple linear form is assumed for the purpose of deriving 
closed-form solutions for particle dispersion characteristics. The linear form has been chosen since 
it approximates closely the forms of auto-correlation functions found in certain numerical models 
used to model particle dispersion (see Graham & James 1996; Graham 1996). 

3. EXACT SOLUTIONS FOR PARTICLE DISPERSION CHARACTERISTICS 

The chosen form of the fluid velocity auto-correlation function is given by 

1 -[TI/T, iflzl ~< T; 
Rr(T)= O, otherwise. [3.11 

This form may be considered as a very simple approximation to auto-correlation functions 
measured in homogeneous turbulence. This form for the auto-correlation function arises naturally 
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in eddy interaction models (Graham & James 1996) which are used extensively to predict particle 
dispersion in turbulent flows. This form arises in such models in two different situations: 

(i) dispersion of arbitrary-mass particles (when body forces can be neglected) in homogeneous, 
isotropic and stationary turbulence (HIST), in which case T = T¢ is the 'eddy lifetime', 

(ii) gravitational settling of heavy particles in HIST, in which case T = L¢/V~, where L~ is the 
eddy length and V~ is the settling velocity. 

In each case, zF, the integral scale of the fluid motions seen by particles, is equal to 7"/2, so that 
the long-time particle dispersion coefficient is given by 

D = u'2T/2 

for all particles. 

3.1. Particles initially at rest 
Substituting [3.1] into [2.15], it is found that the particle velocity auto-correlation function 

becomes 

t2 

H'(t,  z) = 4-EflT [e °(r-2'-') - e °(~- r~ + 2 e-°'fl(z + t - T) ] s ign (T-  (t + z)) 

+ [e °(r-2'-° - e 0(~+ n + 2fl e-°t'+~l(t - T ) ] s ign (T-  t) 

-- [e °(r- ~) -- e at~ - ~  + 2fl[z - T] ] s ign(T-  z) 

+ e0r(e -°~ - 2 e -°(2'+'~) + e -°(r+~) + e-°'fl[2 e-0~(t - T) + t + r -- T] 

+ e-°(2'+~)(4 + 4fiT) -- 4 e -°~ - 2fir + 2fiT]. [3.2] 

The steady-state value is found as the limit as t ~ oo 

H(z) = f ~  [ e - ° r ( e - ° ~ + e ° T ) - 2 e - ° ~ + 2 f l T [ 1 - T / T ] ] ' i f ~ < ' ' T ; [ 3  [3.3] 

[e-°~(e -°r + e ar - 2)], otherwise. 

This is consistent with the expression derived for H(z) in Graham & James (1996). The particle 
energy is given by 

~f lT[2 f l e -a ' [ t -T]  +e-2°'(1 + f l T ) + f l T -  1], ift~< T; 
u~2(t) = H'(t,  O) = 1 u, 2 [3.41 

L ~  [e-2°'(1 + fiT - e °r) + e -°r + fiT - 1], otherwise. 

The steady-state particle energy is 

U ¢2 
u£ 2 = lim,~ o~U£2(t) = ~ (e -°r + fiT - 1). [3.5] 

In the following discussion and on figures 1-7, non-dimensional time t* is defined as t/(T/2) and 
dimensionless reciprocal relaxation times fl* are given by fiT/2 = tiff. Asterisks are omitted for 
clarity of  presentation, but all t and fl should be understood to be dimensionless values. Other 
quantities are non-dimensionalised in an appropriate fashion. The values quoted in the legends of  
figures 1-7 represent values of 13". The development of  dispersion characteristics for particles with 
fl* in the range 0.1 (corresponding to high-inertia particles) to 5 (corresponding to tracer particles 
which follow the fluid turbulence fluctuations faithfully) is investigated. 

The particle energy (normalised by the steady-state value given above) is plotted as a function 
of  (dimensionless) time in figure l(a), and as a function of  fit in figure l(b). Figure l(a) shows that 
tracer particles (large/3) have acquired most of  their energy almost immediately after release (within 
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t = 1 for particles with fl > 5). The relatively slow development of  particle energy for high-inertia 
(low t )  particles is also demonstrated. After t = l0 (i.e. 10 integral time scales), the energy of  the 
particles with the greatest inertia (fl = 0.1) is only around 80% of  the long-time value. Figure l(b) 
indicates that, when plotted as a function of  Bit, the development curves for sufficiently small f 
collapse onto a single limiting curve, corresponding to f = 0, and that development times are 
therefore dependent on the dimensionless group f t  for high-inertia particles. The limiting case is 
discussed in section 4.2. below. 

The numerator in [2.7] can be integrated to give a 'pseudo-dispersion' coefficient, defined by 

~0 °° Dp~(t) = H'(t, z) dz, [3.61 
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Figure I. (a) Time development of energy for initially-static particles; (b) energy of initially-static particles 
vs Beta t. 
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Figure 2. Time development of  pseudo-dispersion coefficient for initially-static particles. 

so that 

D ~ ( t ) = I ~ I - e - ~ ' I  fl2--~-(T-t)z e-ZP'( l+f lT)+~(T-t )+ 1 ] 

In the limit as t ~ oo, 

u'2T 
Dp,(t)--* 2 " 

f12T21 
+ -T- j '  if t ~< T; 

[3.7] 

[3.8] 

i.e. the value of  the pseudo-dispersion coefficient approaches that of  the dispersion coefficient. The 
pseudo-dispersion coefficient (normalised by D) is plotted against time in figure 2. Development 
times are very similar to those of  the particle energy. 

The limiting integral time scale of  the particle motions is given by use of  [3.5] and [3.8], 

u'ZT/2 fiT 2 
= (u':/(t~r))(e-"~ + f i T -  1) = 2(e-Zr + f iT -  1)" 

[3.9] 

For low-inertia particles (fl > 1), the integral time scale approaches that of  fluid particles (i.e. 
T/2). However, for particles with fl << 1, the integral time scale of  the particles is close to the particle 
'relaxation time' lift (which represents the time required to reduce the particle velocity in a 
quiescent fluid by 63%). 

Figure 3 shows the time-development of  the particle integral time scale, normalised by its 
long-time value. Close to t = 0, the integral time scale is large for all particles. This is true even 
for the tracer-particles (fl = 5) and is interpreted as signifying that, initially, the particle 
'remembers' that it is stationary. For all fl, however, the particle integral time scale is close to its 
long-time value within ten integral time scales, even for the highest-inertia particles (fl = 0.1). 
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The mean-squared particle displacement is given by 

U t2 

- ~  [e-a'[/32t(2T --  t) --  2/3T - 4] + e-:a'(/3T + 1) 

--  f13t3/3 +/32t2(/3T + 1) -- 2f l t ( /3T + 1) + /3T  + 3], 
( X 2 ( t ) )  = 

U'2 [e-a'[2 e ar + f12T2 --  2 / 3 T - -  2] + e-2a'[l + f i T  - e at] 
P 

+/3'T:t  -/3~T'/3 - /3~T ~ - / 3 T  + 1 - e-aq, 

if t ~< T; 

otherwise. 
[3.101 

The particle dispersion coefficient is therefore given by 

u'2 fe-a'ra2t2 4/3T + 4] 2e-2a'(flT + 1) 2/32T t t v  --  2t(/3 z T  + /3) + 

- - / 3 2 t 2 + 2 / 3 t ( f l T +  1 ) - - 2 ( f i T + l ) ] ,  ift~< T; 
Dp(t) = 

[e-a'[ -- 2 e ar --/32T2 + 2fiT + 21 

-- 2 e-2a'[1 + f i T -  ear] +/32T2], otherwise. 
[3.11] 

Particle dispersion coefficients (normalised by the long-time value/5 = u'2T/2)  are plotted as a 
function of t in figure 4. Figure 4 shows that the development of the dispersion coefficient is much 
slower that development of particle energy and pseudo-dispersion coefficient, even for the 
tracer-particles. For example, the true dispersion coefficient for the/3 = 0.1 particles is only 35% 
of /3 at t = 10, compared with the 80°/'o development attained at the same time by the 
pseudo-dispersion coefficient. 

An 'effective' dispersion coefficient can be defined as 

1 (X~p(t)). [3.12] O,er(t) = 

As with the pseudo-dispersion coefficient, in the limit as t ~ oo, the effective dispersion 
coefficient is equal to the true long-time dispersion coefficient /3 and the effective dispersion 
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Figure 3. Time development of particle integral time scale for initially-static particles. 
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coefficient is often used to approximate the true dispersion coefficient in numerical simulations of 
particle dispersion. The expression for the effective dispersion coefficient can be determined by use 
of [3.10]. Figure 5 illustrates the effective dispersion coefficient (normalised by/5)  plotted against 
t. The development of the effective dispersion coefficient is much slower than the true or 
pseudo-dispersion coefficients. Even for the tracer particles, the difference between D0~ a n d / 5  is 
greater than 5% after t = 20. For the high-inertia particles, Do, has developed to only 35% of its 
final value at this time. This is partially due to the slow acquisition of energy for the high-inertia 
particles, and partially due to the fact that [3.12] is a coarse approximation to the true dispersion 
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coefficient, due to the initial non-linear development of the mean-squared particle displacement. 

3.2. Particles initially exc i t ed  

The long-time limiting form of H ( t ,  z)  is given by [3.3]. The steady-state particle energy is given 
by use of [3.5]. The mean-squared particle displacement as a function of time is given by 

,- Ut2 
[e a' e -at + e-a'(e -at -- 2) 

-- f13t3/3 + flXt2T -- 2 e -at -- 2fit + 2], if t ~< T; 
(X~p(t)) = 

12 
= ~ [e-a'[e er + e -at -- 2] 

p *  
[3.13] 

+ fl3T:t - f13T3/3 - 2 f iT  + 2 - 2 e-at], otherwise. 

The dispersion coefficient is given by 

r ' o ~  [ ep' e-ar + e-a'[ 2 - e - a t ] -  fl 2t2 + 2fl 2Tt - 2], if t ~< T; 
Dp(t) = -~ ~ ' ,~:  [3.14] 

L ~ [e-a'[2 - (ear + e-at)] + flET2]' otherwise. 

The normalised dispersion coefficient is plotted as a function of t in figure 6. In the initial stages, 
near t = 0, development of the dispersion is clearly more rapid for all particles than was the case 
for initially static particles. Subsequent development is similar to the initially static particles, so 
that, for fl > 0.5, the true dispersion coefficients for initially-static and initially-excited particles are 
at a similar state of development at t = 10. For the higher-inertia particles, the initial stages 
contribute more to the slow development of the dispersion coefficient, which is only 60% developed 
a t  t =  10. 

An effective dispersion coefficient can again be defined as 

1 
D,~(t) = ~ (X~p(t)). [3.151 
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The effective dispersion coefficient (plotted against t in figure 7) once more develops much more 
slowly than the true dispersion coefficient, as can be seen by comparison of  figures 6 and 7. The 
development is, however, more rapid than was the case for the initially static particles, because 
of  the time required for the initially static particles to acquire energy. 

Time development of  the various solutions is considered more fully in the next section. Having 
noted that all of  the dispersion curves appear to have some limiting behaviour for high-inertia 
particles, solutions are expanded as Taylor series in the reciprocal particle time scale fl, and 
development times are investigated as functions of fit for this case. 

4. DEVELOPMENT TIMES FOR HEAVY PARTICLES 

Inspection of  [3.4] shows that in the limit as the initial sampling time t tends to infinity, the 
particle energy tends towards the steady-state value given by [3.5], so that the particles initially at 
rest do eventually attain the same energy as those released from the start. However, the time 
required to reach, say, 99% of  the long-time value of the steady-state energy is evidently dependent 
upon fl, the reciprocal relaxation time of the particle. 

For  fluid particles, fl ---, oo and the expressions for particle energy, mean-squared displacement 
and dispersion coefficient given by [3.4], [3.10] and [3.11] for the initially-static particles differ from 
the corresponding expressions [3.5], [3.13] and [3.14] for the initially-excited particles only near 
t = 0. The fluid particles are in the steady-state immediately after they are released from rest. 
However, non-fluid particles, for which fl is finite, require some time to develop to their long-term 
steady state. 

Of particular interest are the development times of heavy particles, for which fl is small. The 
analysis carried out below involves expanding the expressions for particle characteristics as Taylor 
series about fl = 0. Development times, where the solutions are developed close to their steady-state 
values, are then investigated. 

4.1. Particles initially at rest 

The characteristic functions for very heavy (fl ~ 0) particles are given by 

u;2(t )~ ( 1 -  e-2~'), if t>> T, [4.11 
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Figure 7. Time development for effective dispersion coefficient for initially-excited particles. 
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Quantity Limit value 90%T~ 95%T~ 99% T~., ~ % T ~  

[ 1 \ 
u~(t) u'2flT/2 1.151# 1.50/# 2.30/# In~-~ _ ~/lOOj)/2fl 

Dp(t) u'2T/2 2.97/# 3.68/# 5.30/# In( IRE____ .~/# 
(I - ~/(~/IOO))/ 
/ I \ 

Dr,(t) u'2T/2 1.15/# 1.50/# 2.30/# In(~ _ ~/100~)/2# 

1.5 
Daf(t) u'2T/2 15/# 75/fl 150/# (1 - co/100)# 

and 

so that 

u t 2 T  .4 
D~(t) ,~--~--(I -- e-2#'), ift>>T, [4.2] 

1 
%(0 "" ~, if t >> T. [4.3] 

The dispersion coefficient is given by 

Dp(t) ,,, u'2T[~(1 + e -2p') - e-#'], if t>>T. [4.4] 

Using [3.13], the expression for the effective dispersion coefficient is 

D , f f ( t ) , , , T  # 2e  - a ' - ~ e -  - + 1 , ift>>T. [4.5] 

Table 1 lists the development times Td~, for the particle energy, and for the true, pseudo- and 
effective dispersion coefficients, where the development time is defined as the time beyond which 
the solution differs by less than (1 - ~) from the steady-state solution. The general case in the 
right-hand column indicates the development times for arbitrary ~ close to 100%. It is shown in 
appendix A that the particle velocity auto-correlation function develops in a manner similar to the 
particle energy. Because the particle energy and the pseudo-dispersion coefficient are dependent on 
the development of  this auto-correlation function (see section 2), development times are expected 
to be similar for these quantities. The true particle dispersion coefficient develops at only half of  
the rate of  the pseudo-dispersion coefficient. Development of  the effective dispersion coefficient is 
50 times slower than the particle energy and 20 times slower than the true dispersion coefficient 
(values based on 95% development times). 

4.2. Particles initially excited 

The particle energy and integral time scale are always equal to their long-time limiting values. 
The development of  the true particle dispersion coefficient for the initially-excited particles is given 
by 

u'2T o. D,(t) ,~ ~ [1 - e-#'], if t >> T. [4.6] 

The development of  the effective dispersion coefficient is characterised by 

u'~TV 1 . . . .  1 D,er(t) ~---~-- L~-~ (e " - 1 ) +  1_, if t>>T. [4.7] 

The development times for the dispersion coefficient and for the effective dispersion coefficient 
are given in table 2. Again, the development of  the effective dispersion coefficient is much slower 
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Table  2. 

Quan t i t y  Limit  value 90% Ta~ 95% Td~v 99% Tdcv ~t % Tacv 

/ \ l Dp(t) u'2T/2 2.30/fl 3.00/fl 4.61/fl In ( (  1 _ ~/100))/fl 

1 
D¢fr(t) u'ZT/2 lO/fl 50/fl lO0/fl (l -- at/lOO)fl 

(here by a factor of over 16 for 95% development) than the true dispersion coefficient. Comparison 
of the results for initially-static and initially-excited particles leads to the expected result that 
development times for the latter case are substantially less than for the former case. 
The development time for the effective dispersion coefficient for the initially-static particles is 
always approximately l½ times that for the initially-excited particles, irrespective of the 
level of development. However, it can be shown that, as the development level approaches 
100%, the corresponding difference in development times for the dispersion coefficient is only 
approximately ln(2)/fl. 

It is clear from the results that particle energy develops much more quickly than particle 
dispersion. In order to be fully-dispersive, one must expect that the particle energy be close to its 
long-time value. One might expect that the development time for the dispersion coefficient for 
initially-static particles would exceed the corresponding development time for the initially-excited 
particles by an amount equal to the development time of particle energy for the initially-static 
particles. Because increasing energy and dispersivity occur simultaneously, however, the 
development time for initially-static particles is less than this sum and is only around 25% greater 
than for initially-excited particles (95% development times). 

The analysis shows that numerical particle dispersion methods in which particle dispersion 
characteristics of high-inertia particles are computed can be made considerably less time-consuming 
by the judicious choice of the method used to approximate long-time dispersion coefficients. Use 
of a pseudo-dispersion coefficient (formed by integration of the particle velocity auto-correlation) 
leads to a value close to the long-time value much more quickly than the real dispersion coefficient 
(formed by differentiation of the curve of mean-squared particle displacement vs time). The use 
of the effective dispersion coefficient requires extremely long computation times, even for initially 
excited particles, and should probably be avoided whenever possible. 

5. CONCLUSIONS 

This paper reports the results of an analytical study of the temporal development of dispersion 
characteristics (energy, velocity auto-correlations, dispersion coefficients, etc.) of particles released 
into a homogeneous, isotropic, stationary turbulent flow. The influence of two different sets of 
initial conditions for the particles on these characteristics has been investigated. The first case 
concerns particles initially at rest on release into the turbulent flow. The second case assumes that 
the particles are released so that the initial energy of the particles (i.e. the variance of the initial 
particle velocity distribution) is equal to the steady-state energy, where particles have been resident 
in the turbulent flow for a long time. The analysis assumes that the auto-correlation of the fluid 
velocities following a particle path has a simple linear form. The following conclusions can be 
formed: 

(i) as expected, the development times for initially-static particles exceed the corresponding 
times for the initially-excited particles, 

(ii) development times for high-inertia particles are independent of fluid turbulence 
characteristics, 

(iii) particle energy and the pseudo-dispersion coefficient (both of which are derived from the 
particle velocity auto-correlation function) develop for the initially-static particles 
significantly more quickly than the true dispersion coefficient, 

(iv) if long-time values of the particle dispersion coefficient are required for high-inertia particles, 
the true dispersion coefficient determined by differentiation of the mean-squared 
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displacement curve, or the pseudo-dispersion coefficient formed by integration of the 
particle velocity auto-correlation function should be used, with the latter method leading 
to reliable results more rapidly. 
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A P P E N D I X  A 

Dispersion Characteristics for Heavy Particles--Arbitrary Energy Spectrum 

The analysis presented in this paper has determined development times for particle motions 
subject to a particular (linear) form of the fluid velocity auto-correlation along the path of a 
particle, Rp(t). It is shown below that the expressions for the particle velocity auto-correlation (and 
therefore particle energy and integral time-scale) and for both the effective and actual dispersion 
coefficients are independent of Rp(t), and are therefore valid for any form of homogeneous, 
isotropic and stationary turbulence. 

Initially-excited particles 

The steady-state value of the particle velocity auto-correlation is given by 

u'211 ~ H(z) = ~ e -~'- ~lRp(t) dt 
o0 

=u'2f l (e-a '~_eP'Rp(t)dt+e-a ' fo 'eP'Rp(t)dt+e~'I®e-a'Rp(t)dt)  " 2  [A1] 

Assuming that the integral time scale of the fluid motions zp = So ~ Rp(t) dt is small compared 
with 1/[1 and z, the contribution to the integral from z to ov is small and 

H(z) = u'2flzp e -~'. [A2] 

Consequently, 

Up 2 = H(0) = u'2flzp [A3] 
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and 

so that 

and 
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Ro(r) = e a~, 

fO t Dp(t)  = u '2 H ( r )  = u'2vp(1 - e-P'), 

(, ) (X~p(t)) = 2 H(r)  dr dt '  = 2u'2rr t + ~ (e -~' - 1) 
do do 

Den( t )=(X~p( t ) )=2t  u'2r~'( 1 1 ) + ~ ( e  ~ ' -  1 )  . 

Taking the Fourier transform of H(r), and using the convolution theorem, 

~ ~'~ ~(co)cos(co~) 
H ( r )  = 2n Jo (f12 + c02) do) 

where 

E(co) = 4u "2 RF(r)cos(cor) dr 

is a spectral energy function, so that 

1 , ~  ~ 
Rr(r) = ~ E(co)cos(cor) dco. 

[A4] 

[A5] 

[A6] 

[A7] 

[A8] 

[A9] 

[AIO] 

In i t ia l ly -s ta t ic  par t ic les  

The particle velocity auto-correlation is given by 

H ' ( t ,  r )  = u'2B2e -B¢2' + ~) e ~° e p(° + ~)Rp(O) d~ dO 

=/Fe-~¢2' + ,~ ea0 e ~° + ~) E(co)cos(m~) do) d~ dO 
,dO d - e 

- -  2n fl-'~ f0 ~ (]/~E(CO)+ c°2) [cos(cot) -- cos(co(t + r))e -p' 

- -  cos(cot) e -~' + T) + e-B(z, ÷ ,)] dw. 

Now 

[.o~ E(o~)cos(coT). 

[All] 

[A12] 
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so that  

and,  after some rearrangement,  

Consequently,  

and 

flz foo E(co)cos(cot) dco = u; 2 e -#', 
2re Jo (f12 + co2) 

H'(t ,  z) = Up 2 e-#'(1 - e-Z#'). 

u~2(t) = u~2(1 -- e-2#'), t >>z~' 

[A13] 

[A14] 

[A151 

fo °~ H'(t ,  ~) dz 
1 t >> ~' .  [A16] 

zp(t) = u;2(t) = -fl, 

The mean-squared particle displacement at  time t is given by 

(X~p(t))=u'2flzfo'fo'fo°;iXe-#(°-2X)e-#("-:)(uF(x,up(x+z))dzdxdr/dO 

= flz e -#(°- Z~)e-#("- :~ E(~o)cos(09z) do9 dz dx dr/dO. [A17] 
x Z/I: 

After some detailed algebra, this can be evaluated as 

1 fo®E(co)I(1 2 e ~ ?  2 4f l s in(cot ) (1-e-# ' )+4f l2( l -cos(cot ) )]dco .  [A18] 
(X~v(t)) = ~ (fl . ) CO CO 2 

It can be shown that  this expression is equivalent to 

i 1  l (X~p(t)) = u ' ~  2t - ~ (1 - e-#')(3 - e -~') , [A19] 

Dp(t) = u'2z~(1 - e-#') 2, [A20] 

For  the turbulence spectrum considered in section 3, T~' = T/2, so that  [A5] and [A7] for the 
initially excited particles are identical to [4.6], [4.7], and [A15], [A16], [A20] and [A21] for the 
initially static particles are identical to [4.1], [4.3], [4.4] and [4.5]. 

and 

leading to 

E 1 ] Dea(t) = u'%~' 1 -- ~ (1 -- e-#')(3 -- e -#') . [A21] 


